401

The Charge-transfer Band in the Ultraviolet Spectrum of Cyclopropyl Ketones

By A. Y. MEYER*

(Department of Organic Chemistry, Hebrew University, Jerusalem, Israel)

and B. MUEL and M. KASHA

(Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida)

Summary The charge-transfer band, predicted to occur in the ultraviolet spectrum of cyclopropyl ketones, is observed at about 180 nm, and has a molar extinction of ca. 4000.

An "Extended-Hückel" analysis¹ indicates that the energy of the degenerate pair of highest-occupied molecular orbitals in cyclopropane (Δ) is comparable with that of the carbonyl π and lone-pair (*n*) levels. This suggests that the u.v. spectrum of cyclopropyl ketones would contain, somewhere between the $n \to \pi^*$ (ca. 300 nm) and $\pi \to \pi^*$ (ca. 150 nm) absorptions,² an additional band, $\Delta \to \pi^*$, representing charge-transfer from the three-membered ring, to C=O.

To locate the novel transition, we carried out MO calculations of the type used in the study of cyclopropane³ and phenyl-ketones.⁴ $\Delta \rightarrow \pi^*$ is predicted to lie at 176—178 nm, with oscillator strength in the range 0.00—0.08, dependent upon conformation.

We have observed[†] this transition in the vapour-spectra of several cyclopropyl ketones (e.g., cyclopropylmethyl

† Spectra were recorded on a McPherson vac.-u.v. spectrometer (model 225), a discharge lamp with H₂ continuum serving as source.

ketone and spiro[2,4]heptan-4-one,[‡] see Figure). As expected, it is situated at ca. 180 nm, in the gap between two bands that characterize all ketones⁵ (the band just below 200 nm is the one discerned, in solution spectra, at ca. 200 nm).⁶ It resembles in intensity [ϵ (mol) ca. 4000] the bands that flank it, forming with them a pattern that is quite distinct from that of non-cyclopropyl ketones (e.g., that of 3-methylbutan-2-one, see Figure).

A more detailed analysis of spectra and MO results will be given elsewhere.

(Received, 27th January 1972; Com. 120.)

A sample of spiro[2,4]heptan-4-one was kindly supplied by Prof. J.-M. Conia, and used as such. 3-Methylbutan-2-one and cyclopropylmethyl ketone were purified by g.l.c., with a 20 ft × 0.75 in column of 10% carbowax 20 M on acid-washed Chromosorb W (60/80 mesh).

- ¹ R. Hoffmann, Tetrahedron Letters, 1965, 3819.
- ² G. Berthier and J. Serre, in 'The Chemistry of the Carbonyl Group', ed. S. Patai, Interscience, London, 1966, p. 1. ³ A. Y. Meyer, *Theor. Chim. Acta*, 1971, 22, 271.

- ⁴ A. Y. Meyer, *Theor. Chim. Acta*, 1968, **9**, 401. ⁵ E. E. Barnes and W. T. Simpson, *J. Chem. Phys.*, 1963, **39**, 670.
- ⁶ E. M. Kosower, J. Amer. Chem. Soc., 1958, 80, 3261.